

衛星画像における大気の影響とその対策

弘前大学理工学部 飯倉善和

•衛星画像処理の概要 ・物理量に変換してから応用を! ・簡便な大気・地形効果補正とその問題点 $DN = (DN - B)/(\cos b + C)$ ・回帰分析によるパラメータの推定 ・物理モデルに基づく大気・地形効果補正 •DN値から放射輝度値への校正 ・放射伝達モデルによる大気の影響推定 エアロゾルの鉛直分布および性質? •起伏による影響の解析 ・空間的な変動(ヘイズや巻雲)による影響 •波長による影響の違い •大気影響度の定義と補正への利用

Lands at ETM+ June 30, 2002 J¹08132

前処理:センサノイズの除去・DNの校正・精密幾何補正 大気・地形効果補正、方向性反射率の補正 物理量(画素単位):地表面の分光反射率、温度、放射率 統計量(領域単位):平均値、分散、統計分布の形状 応用分野:土地被覆分類・土地利用図の作成、温度推定、 変化抽出

合成開口レーダの利用:後方散乱係数、散乱分解、干渉 ハイパースペクトルの利用:分光反射率データベースの整備

参考文献

A. Baraldi et al. (2010) : Operational Two-Stage Stratif ed Topographic Correction of Spaceborne Multispectral Imagery Employing an Automatic Spectral-Rule-Based Decision Tree Preliminary Classif e, IEEE TGRS. 48(1), 112–146

大気地形効果補正 (可視)

補正前

補正後

大気地形効果補正 (近赤外)

補正 $DN = (DN - B)/(\cos b + C)$ 式:

日本リモートセンシング学会・評価標準化研究会

12 August 2011

現存植生図(環境省)との比較

日本リモートセンシング学会・評価標準化研究会

12 August 2011

簡単な補正式 (一般形) : $DN = (DN - B)/(\cos b + C)$

修正コサイン法:C=0

C補正法:B=0

12 August 2011

物理モデルに戻って考える必要がある!!

物理モデル:衛星で検知する放射輝度

$Ls=Ts(z)\rho(x,y)lo/\pi+Lp(z)+Lb(z)$

- Ts: Transmittance from surface to sensor
- ρ : Surface reflectance
- *lo*: Irradiance at the surface
- *Lp* : Path radiance
- *Lb* :Background radiance

$lo(x,y)=EoT\theta \ cos\beta \ + Ed + Et$

- *Eo* : Solar radiance
 - at top atmosphere
- :Transmittance Τθ
 - from sun to surface
- Solar incident angle Ed : Diffuse solar irradiance
- Et : Reflection

from neighbor slopes

物理モデルと実用的な補正式

 $Ls=Ts(z)\rho(x,y)lo/\pi+Lp(z)+Lb(z)$ 衛星での放射輝度 衛星データからの推定 Ls=offset+gain*DN 地表での放射輝度 $Ls^*=\pi(Ls-Lp(z)-Lb(z))/Ts(z)$ $lo(x,y)=EoT\theta$ (z)cos β + Ed + Et 地表での放射照度 $\rho = \frac{\pi (L_s - L_p - L_b)}{T_s (E_0 T_a \cos b + E_d + E_t)} = \frac{p L_s^*}{I_o}$ 分光反射率

実用的な大気・地形効果補正/BとCの決定 $DN = (DN - B)/(\cos b + C)$ LIES

センサーの測定精度の向上 数値標高モデルの利用 最適化法による精密幾何補正 地形パラメータの厳密な計算 コンピュータの性能向上 放射伝達方程式 (6S)の利用

科学的かつ体系的な処理が可能

物理モデルに基づいた処理 モデルの妥当性の衛星データによる検証

解析例:利用した衛星画像

		band1	band2	band3	band4	band5	band7
NASA	gain	0.776	0.796	0.619	0.965	0.126	0.044
	offset	-6.20	-6.40	-5.00	-5.10	-1.00	-0.35
RESTEC	gain	1.176	1.205	0.939	0.965	0.190	0.044
	offset	-6.20	-6.40	-5.00	-5.10	-1.00	-0.35

2006年4月~2008年9月までの ETM+プロダクトの文字情報に不備

ブナ林での放射輝度値Ls

	band1	band2	band3	band4	band5	band7
RESTEC	67.17	53.13	25.07	117.10	17.01	1.51
NASA	45.29	36.11	17.25	118.03	11.46	1.56
RESTEC-NEW	44.72	35.44	16.69	117.08	11.34	1.51

水域での放射輝度値Ls

	band4	band5	band6	band7
ASTER	3.576	1.101	0.993	1.059
BETA	3.417	1.051	0.930	0.977
ETM	1.824 (band 5)		0.518 (band7)	

平坦地におけるブナ林の放射輝度(夏)

	band1	band2	band3	band4	band5	band7
∲ ëF ∲ ∲0	63.440	42.946	29.382	54.116	39.894	21.011
フXツฃチFテ□ 1	3.865	12.341	7.740	82.510	66.050	25.114
דײַ×R⊁IDN	66.908	54.019	36.326	128.148	99.158	43.544
gain	0.776	0.796	0.619	0.965	0.126	0.044
offset	-6.20	-6.40	-5.00	-5.10	-1.00	-0.35
גײַבR⊁ILs	45.700	36.582	17.493	118.626	11.467	1.554

6Sによる大気パラメータの計算

入力データ の例

0	(User Def ne)
26.2 123.6 00	6 30 (for Solar Information)
2	(Mid Latitude Summer)
2	(Maritime AEROSOL MODEL)
24.5	(Direct Visibility Input km)
-0.684	(TARGET ALTITUDE IN KM)
-1000	(SATELLITE CASE)
138	(Landsat ETM+ Band 1)
0	(HOMOGENEOUS CASE)
0	(DIRECTIONNAL EFFECTS)
0	(Next Value is Surface Ref ectance)
0.0063	(Surface Ref ectance)
-1	(No ATMOSPHERIC CORRECTION)

E.F.Vermote et al. (1997), Second simulation of the satellite signal in the solar spectrum, 6S : an overview, IEEE Trans. GRS

Second Simulation of the Satellite Signal

in the Solar Spectrum (6S)

 $E_0 T_a = E_s / \cos q$

- * apparent ref ectance 0.0842 appar. rad.(w/m2/sr/mic) * 45.761 ******
- * irr. at ground level (w/m2/mic)
- direct solar irr. atm. diffuse irr. environment irr * * 1088.789 1.595
 - 424.090
- rad at satel. level (w/m2/sr/mic) *
- atm. intrin. rad. background rad. pixel radiance * * 0.700 2.029 43.032

*	downward	upward	total	
* gas. trans. :	0.99417	0.99477	0.98899	
*****	*****	*********	***	
*	ravleigh	aerosols	total	

	rayicigii	ac105015	iotai
* optical depth:	0.16301	0.23571	0.39872

平坦な地形(6S):
$$L_s = rT_s(E_0T_q \cos q + E_d^h + E_e)/p + L_p + L_b$$

起伏のある地形: $L_s = rT_s(E_0T_q \cos b + E_d + E_t)/p + L_p + L_b$

6Sによる大気パラメータの推定(夏)

高度	0.684km	視程	24.5km			
	band 1	band 2	band 3	band 4	band 5	band 7
放射輝度Ls	45.761	36.867	17.522	118.62	11.453	1.536
真の反射率	0.0063	0.0320	0.0120	0.4240	0.1880	0.0760
見かけの反射率	0.0842	0.0724	0.0408	0.4054	0.1815	0.0677
Lp	43.03	23.59	13.09	5.86	0.56	0.10
Lb	0.70	2.90	0.86	19.70	1.55	0.17
Lpixel	2.03	10.38	3.57	93.06	9.35	1.27
Edirect	1088.79	1089.65	976.10	689.29	158.27	55.45
Edifuse	424.09	341.77	264.20	162.89	29.22	8.41
Ee	1.60	5.48	1.33	24.89	1.51	0.15
Tdown	0.6378	0.6810	0.7237	0.7498	0.7983	0.7781
Тир	0.6680	0.7085	0.7482	0.7724	0.8170	0.7984

パスラディアンス (Lp) と透過率 (T) の標高依存性

Altitude	0.584-0.784km		Visibility	24.5km		
	band1	band2	band3	band4	band5	band7
Lp/km	8.23	5.86	3.86	2.11	0.26	0.05
depth/km	0.131	0.117	0.107	0.098	0.080	0.071

Estimation at surface radiance

$$L_{s}^{*} = \frac{L_{s} - L_{p} - L_{b} + (h - h_{0})dL_{p}}{T_{s}e^{(h - h_{0})dT}}$$

地表での放射照度の推定

$$C = (E_{d} + E_{t}) / E_{0}T_{q} = \frac{E_{d}^{h}V_{d} + pLC_{t}}{E_{0}T_{q}}$$

天空視野要素の計算

複数の方位に置ける地平線の計算

照返し光の計算

衛星データを用いた視野域上の厳密な積分 平均放射輝度と地形構成要素を用いた計算

スカイライトの非等方性

$$E_{d} = E_{d}^{h} \{T_{q} \cos b + (1 - T_{q} \cos q)V_{d})\} \quad C = \frac{E_{d}^{h}(1 - T_{q} \cos q)V_{d} + E_{t}}{E_{0}T_{q} + E_{d}^{h}T_{q}}$$

J. E. Hay(1983), Solar energy system design: the impact of mesoscale variation in solar radiation, Atmos. Ocean

(補正パラメータCの決定)

補正パラメータの推定

DN = (DN -	$B)/(\cos b)$	+C)
------------	---------------	-----

11

	band 1	band 2	band 3	band 4	band 5	band 7
В	64.371	41.335	30.607	31.760	24.705	14.180
C1:平均	0.1218	0.0617	0.0461	0.0469	0.0298	0.0224
標準偏差	0.0316	0.0044	0.0033	0.0122	0.0077	0.0058
C2:平均	0.0034	0.0045	0.0021	0.0654	0.0282	0.0113
標準偏差	0.0032	0.0027	0.0015	0.0645	0.0279	0.0111
C=C1+C2:平	0.1252	0.0661	0.0482	0.1123	0.0580	0.0337
標準偏差	0.0338	0.0035	0.0030	0.0722	0.0330	0.0152

1

陰影補正(地形効果補正)

 $\rho = \frac{\pi (L_s - L_p - L_b)}{T_s (E_0 T_q \cos b + E_d + E_t)} = \frac{p L_s^*}{I_o}$

地表での放射輝度の推定

 $DN = (DN - B)/(\cos b + C)$ $Ls^* = \pi (Ls - Lp(z) - Lb(z))/Ts(z)$

校正係数a,bの信頼性 ランドサットTMでは10%以下 ランドサットETM+では5%程度 テラASTER/だいちAVNIR-2?

パスラディアンスL_pの空間変動 可視バンドにおける標高依存性 ヘイズや巻雲の影響

背景放射輝度L_bの空間変動 周りの画素の輝度に影響される。

Lands at TM June 3, 1996 7107132

波長による大気の影響の違い

近赤外バンドのDNがすべて一致している画素を分類クラスとした。

トルーカラー合成画像:

R(Band 3),G(Band 2),B(Band 1)

フォールスカラー合成画像:

R(Band 4),G(Band 5),B(Band 7)

M.J.Carlotto (1999) : Reducing the effects of space-varing wavelength-dependent scattering in multispectral imagery, Int J. Remotesensing, 20(17), 3333-3334

日本リモートセンシング学会・評価標準化研究会

画素毎のパラメタBの推定

1.傾きBoを8とする。
2. XoにおけるDNの値Yoを求める。
3.各画素毎にBを計算する。

LIES

画素毎に推定した傾きB

地域的な影響度B'

画素毎の傾きBに空間的な中央値フィルタ(600 m以内)を適用して平滑化した結果

飯倉(2005):起伏のある地形での衛星画像に対するヘイズの影響の補正、 リモセン学会第39回学術講演会論文集、87-88

影響度を利用した大気補正

バンド1

補正前

補正後

補正後のDN=DN-B'(Xo-X) 但し Xは標高、Xoは基準標高

まとめ

衛星データは物理量に変換してから利用すべきである。 物理的なモデルとデータに基づいて体系的に処理する。 起伏のある地形においては、

大気の影響と地形の影響は不可分の関係にある 提供されるデータは信用ができるか?

幾何的な精度の評価 校正係数の信頼性

大気パラメータは観測されているのか?

基本的な気象観測と利用できるデータ エアロゾルの性質と分布:視程? 空間的に変化する大気パラメータをどう取り扱うの か?

大気地形効果補正をどのように検証するか?

- A. Baraldi et al. : Operational Two-Stage Stratif ed Topographic Correction of Spaceborne Multispectral Imagery Employing an Automatic Spectral-Rule-Based Decision Tree Preliminary Classif e, IEEE TGRS. 48 (1), 112 146, 2010
- F. Tupin et al. : How Advanced Image Processing Helps for Sar Image Restoration and Analysis,IEEE Geoscience and Remote Sensing Society Nesletter, 10-17, March 2011
- J. S. Pearlman, et al.: Hyperion, a Space-based Imaging Spectrometer, IEEE, Trans. Geosci. Remote Sens.,41, 1160-1173, 2003.
- Dell'Endice, et al.: Scene-based method for spatial misregistration detection in hyperspectral imagery, Applied Optics, 46, 15, pp. 2803-2816, 2007.
- E. Vermote et al: Second Simulation of a Satellite Signal in the Solar Spectrum -Vector (6SV), 6S User Guide Version 3, November 2006
- M.J.Carlotto : Reducing the effects of space-varing. Wavelength-dependent scattering in multispectral imagery, Int J. Remotesensing, 20(17), pp.3333-3334, 1999
- S.Liang et al. : Atmospheric Correction of Landsat ETM+ Land Surface Imagery-Part I, IEEE TGRS. 39(11), 2490 2498, 2001